
At ARMs Length
Yet So Far Away

Brad Spengler

Open Source Security, Inc.

October 2013

H2HC

The Story of KERNEXEC and UDEREF on ARM

What is it?

• ARM port of two of PaX’s crucial arch-specific kernel self-protection features

• UDEREF: prevents accidental/malicious direct userland access via the kernel

• NULL derefs

• Poorly-chosen “magic” poisoned pointers

• OOB index + trivially forged structs (PERF_EVENTS)

• KERNEXEC: remove RWX memory from the kernel

• Implies no execution of userland memory

• Protects against effectively-RWX memory via virtual aliases

• Allows for read-only protection above and beyond simple ‘const’

Why?

• Upstream kernel self-protection features are non-existent

• Some vendor kernels have CONFIG_STRICT_MEMORY_RWX

• Config description is a lie

• Implementation is a joke

• Lets vendors mark a checkbox

• Self-demonstrate quickly applying security concepts to an arch mostly “new”
to me, armed only with the manual

• Spite

• See last year’s H2HC presentation

Beginning steps
• Acquired an Arndale development board (with Linaro userland)

• Samsung Exynos5, ARMv7, Cortex A15

Beginning steps

• Started with ARMv7 since it supports Privileged Execute-Never (PXN)

• Think x86 SMEP

• PXN didn’t exist upstream yet, so I wanted to add support

• Focused on Large Physical Address Extension (LPAE) support first

• 3-level paging structures instead of 2-level

• More uniform layout of fields (easier to work with)

• Think x86 PAE

KERNEXEC on ARM LPAE

• arch/arm/mm/mmu.c handles setup of protections on most kernel mappings

• mem_types array – base domain/page protection information for each level descriptors

• build_mem_type_table() – amends information in mem_types with additional flags
based on CPU capabilities

• Most used is MT_MEMORY, used for RWX kernel mappings

• Completely eliminated, replaced with MT_MEMORY_RW and MT_MEMORY_RX to fail
safely during forward porting

• Modified kernel linker script to group up sections with same protections

• Boot with weakened protections on the kernel image, lock in the final
protections when freeing initmem

• __read_only

KERNEXEC on ARM LPAE

• Problem! PaX allows temporary suppression of page protections to allow
privileged code to write to read-only areas

• pax_open_kernel(void) / pax_close_kernel(void)

• LPAE seemingly offers no way to do this as on x86

• Creating temporary aliases would require per-cpu pgds to be secure

• Would need to muddy up all open/close calls with arguments that would be completely
ignored on x86

• Punted on this

• Moved on to LPAE UDEREF, but this set the seed for an approach that would work for
most modern ARM users

UDEREF on ARM LPAE

• Modules are located at 0xBF000000, need to move to match Translation
Table Base Register (TTBR*) granularity

• Now TTBR0 fully covers userland, TTBR1 fully covers kernelland

• Can disable userland access by disabling TTBR0 and changing ASID

0xc0000000
0xbf000000

Kernel Kernel

Userland Userland

UDEREF on ARM LPAE

• Performed a quick test demonstrating previous technique and need for
changing ASID

• Moved on at this point

• Got lazy and didn’t feel like rewriting ASID generation code

• Started disliking LPAE already for its inability to support the tighter KERNEXEC

• Could split ASID space in half, or perhaps something smarter?

• I discovered after writing the blog that the previous description covers
exactly how Apple iOS’ UDEREF-like feature works

KERNEXEC for ARMv6+

• Able to reuse most of the work put into KERNEXEC for LPAE

• CPU/LPAE-specific details mostly abstracted out by use of #defines

• PMD_SECT_RDONLY

• Found an upstream deficiency here

• On ARMv7 we can still use PXN to prevent userland code exec from kernel

• It’s not as fine-grained as with LPAE, but it ends up not mattering

• Without LPAE, we have a much more powerful feature to exploit

• Domains!

KERNEXEC for ARMv6+

• Domain Access Control Register (DACR)

• 16 domains (Linux only uses 3)

• Each domain supports several access types:

• DOMAIN_NOACCESS – reject access regardless of page protections

• DOMAIN_CLIENT – obey normal page protections

• DOMAIN_MANAGER – ignore any page protections

• Domain is a 4-bit field in page table entries

• Important: domain also included in TLB entry, DACR always consulted

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KERNEXEC for ARMv6+

• Domains are an extremely powerful feature

• Ability to block access to nearly-arbitrary memory ranges/”kinds” of memory on a per-
CPU basis

• Possible KERNSEAL uses

• What else could you think of for this?

• For KERNEXEC, main use is to solve the pax_open/close_kernel problem

• Set access of kernel domain to DOMAIN_MANAGER on open

• Switch back to DOMAIN_CLIENT access on close

• But….

UDEREF for ARMv6+

• Again using domains

• pgalloc.h:#define _PAGE_USER_TABLE (PMD_TYPE_TABLE | PMD_BIT4 |
PMD_DOMAIN(DOMAIN_USER))

• So by setting the user domain to DOMAIN_NOACCESS, we cut off all access to userland

• Kernel has approved userland accessors

• copy_*_user()

• strnlen_from_user()

• csum_partial_copy_from_user()

• …

• Introduce pax_open_userland() and pax_close_userland() to these

UDEREF for ARMv6+

Kernel

Userland

Kernel

Userland

Kernel

Userland

Kernel

Userland

Executing in userland Ambient kernel
permissions

Userland accessor
copying to userland
(USER_DS)

Interrupt handler
code servicing
interrupt during
userland accessor

Kernel

Userland

Userland accessor
copying to kernel
(KERNEL_DS)

KERNEXEC/UDEREF for ARMv6+

• Via domains we achieve protection equivalent to PaX’s KERNEXEC/UDEREF
on i386

• This makes pipacs and myself happy 

• I hate the shadow region on the non-PCID version of amd64 UDEREF

• With both features enabled, 1.6% performance hit observed in NGINX
Benchmark 1.0.1.1, below stddev of test

• This performance can be improved further, my assembly was written for clarity

Notes on 3.10 upstream ARM fixes

• Special page installed into each task, sigreturn stubs located at system-wide
“random” offset within that page

• Installed page is subject to mmap randomization

• I don’t know of any userland that can work without the kuser helpers,
requiring one to enable the option that adds them all back

• Leaves fixed-address vector map accessible

• These helpers are still necessarily at fixed addresses (thanks to glibc/toolchain)

• My Linaro user perhaps needs the fewest, just get_tls()

• Kernel address leaks from the vector page should be dead now

• Relevant code/data moved to an adjacent kernel-only page

Our ARM vector page fixes

• As part of KERNEXEC work, kernel RWX on the vector page via virtual aliasing
(one RW, another RX) was eliminated

• No special page installed into each task for sigreturn stubs

• Kernel controls the address of the sigreturn stub userland will try to execute

• Unique random inaccessible kernel address assigned to each task’s mmu_context struct

• We cause userland to try to execute at this random address, catch the fault, and
perform the sigreturn

• Vector page is inaccessible to userland

• We emulate get_tls() in the kernel

Testing

• Previous mentioned kernel “backdoors” to trigger exploit-like activity

• Created page table dumper for both short and long mode descriptor format

• !LPAE: https://grsecurity.net/~spender/kmaps-arm-v6.c

• LPAE: https://grsecurity.net/~spender/kmaps-arm-lpae.c

• Uses /dev/mem

• Finds and reports pages of memory that are RWX through virtual aliasing

• Verified full removal of RWX from the kernel

• Verified inability to execute/access userland directly from the kernel

https://grsecurity.net/~spender/kmaps-arm-v6.c
https://grsecurity.net/~spender/kmaps-arm-lpae.c

Testing
root:~$./test

PaX: Kernel tried to access userland memory at 0x00008010, fsr=00000206

Internal error: : 206 [#1] PREEMPT SMP ARM

Modules linked in:

CPU: 0 Not tainted (3.7.1-grsec-00071-gac214bd-dirty #49)

pc : [<c02296a4>] lr : [<c02295b4>] psr: 60000013

sp : ee847f90 ip : 30c7387d fp : 00000000

r10: 00000000 r9 : ee846000 r8 : c0206128

r7 : 000000d5 r6 : 00007a69 r5 : b390a788 r4 : 00000000

r3 : 00008000 r2 : 40003000 r1 : b390a8c4 r0 : 00007a69

Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user

Control: 30c5387d Table: 40003000 DAC: fffffffd

Process test (pid: 2450, stack limit = 0xee846238)

[…]

Code: e1a00007 e8bd41f0 ea0041fd e3a03902 (e5934010)

Kernel panic - not syncing: grsec: halting the system due to suspicious kernel crash caused by root

Lessons Learned

• Spite fails to motivate when realization sets in that the code must be
maintained for free forever 

• Fragmented/old userland is a maintenance nightmare for the kernel

• Mobile Linux vendors care more about checking a box than real security
improvements

• Expect Apple to continue to dominate over them, SEAndroid/KNOX are just same tired
“security = access control” frauds

• Focus on fundamentals, not fads

• Makes it easy to apply security to new platforms

Exploit Weaponization
(For the Linux Kernel)

(Real quick-like)

Why?

• Because namespace/virtualization/LSM usage is increasing with little
discussion of tradeoffs or importance of kernel self-protection

• Because ring-0 can do whatever it wants

• Because I’ve been told making weaponization/reliability information public
reduces the value of exploit sellers

• I am all for this!

• Because it’s embarrassingly easy, as you’ll see

Disable SELinux

• Set security_ops to &default_security_ops (always works)

• Thanks to some SELinux “code cleanup” you can also return to void
reset_security_ops(void) (works for all other LSMs too)

• If CONFIG_SECURITY_SELINUX_DEVELOP enabled, you can also modify
‘selinux_enforcing’ (read by getenforce tool when reading /selinux/enforce,
also in /selinux/status)

• By patching sel_read_enforce and selinux_kernel_status_page, you can put
SELinux into permissive mode while making userland think it’s in enforcing
mode

Disable AppArmor

• Set security_ops to &default_security_ops

• Or return to reset_security_ops

• Older kernels had some toggles: apparmor_enabled, apparmor_audit,
apparmor_logsyscall, apparmor_complain

• Newer kernels (3.x) uses new variables: aa_g_profile_mode, aa_g_audit,
aa_g_audit_header, aa_g_logsyscall, aa_g_lock_policy

Disable IMA

• Set security_ops to &default_security_ops

• Or return to reset_security_ops

• Patch out ima_bprm_check, ima_file_mmap, ima_path_check, and
ima_file_check to all return 0 (\x31\xc0\xc3)

Disable TOMOYO/all other LSMs

• Set security_ops to &default_security_ops

• Or return to reset_security_ops

Disable Auditing

• Clear audit_enabled

Disable No-New-Privs (NNP)

• Bit field located between current->personality and current->pid (both known
values)

• Other fields are unimportant, just clear all 4 bytes

Break out of user namespaces

• Perhaps surprisingly, my commit_creds(prepare_kernel_cred(NULL))
technique does it automatically

• struct cred {

…

struct user_namespace *user_ns; /* user_ns the caps and keyrings are relative to. */

…

}

Break out of chroots

• Get task_struct ->fs offset either through simple static analysis on kernel
image or finding init_fs offset within init_task

• Find offset of root and pwd within fs_struct

• Call set_fs_root(current->fs, init_fs.root), set_fs_pwd(current->fs,
init_fs.pwd)

Break out of vserver

• Find offsets of xid, vx_info, nid, nx_info in task struct

• Will be 0 in init_task, but set in a confined process

• Clear the fields

Break out of OpenVZ

• Call prepare_ve0_process(current)

Reliability under Xen

• Don’t blindly change cr0.WP and attempt to modify kernel code, it will cause
a GPF

• Call make_lowmem_page_readwrite(addr) instead

• Clean up with make_lowmem_page_readonly(addr)

Reliability under CONFIG_DEBUG_PAGEALLOC

• Don’t blindly scan through kernel memory, kernels with this option enabled
have been observed to have a guard page in the kernel image

• Enlightenment parses page tables to determine safe regions to scan

Reliability under CONFIG_KALLSYMS

• Unknown kernel, no vmlinux, no /proc/kallsyms, no System.map? No
problem!

• Assuming ring0 execution can be obtained without them

• Payload reliability obtained by using the kernel’s own symbol tables in
memory

• Enlightenment finds the kernel’s own symbol resolution routines and can
thus resolve module symbols as well

Reliability when returning to userland

• Make sure the userland code is locked into physical memory with mlock()

• Unprivileged users can lock 64KB

• Linux is not Windows! No kernel memory is paged, attempting to access non-
present memory (outside of exception-handled areas) will result in a visible oops, or
worse

• More likely under low memory, memory pressure, high exploit memory reqs, higher
time between allocation and use

• A decade of exploits returning to userland, and no one gets this right!

• How was my PERF_EVENTS exploit so reliable despite the 64KB lock limit?

• Read the enlightenment source for this one ;)

X86 PERF_EVENTS Exploit
[!] Array base is 0xc1a57a60

[!] Detected structure size of 12 bytes

[!] Targeting 0xc1a69b10

[+] Got ring0!

[+] Detected 2.6/3.x style 8k stacks, with current at 0xf1f2cc20 and cred support

[+] Disabled security of : AppArmor LSM

[+] Found ->fs offset at 0x388

[+] Broke out of any chroots or mnt namespaces

[+] Got root!

root@ubuntu:/home/spender/enlightenment#id

uid=0(root) gid=0(root) groups=0(root)

root@ubuntu:/home/spender/enlightenment#uname -a

Linux ubuntu 3.5.0-23-generic #35~precise1-Ubuntu SMP Fri Jan 25 17:15:33 UTC 2013 i686 i686
i386 GNU/Linux

References
ARM Manual

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html

Questions?
All code described in this talk is available at https://grsecurity.net

More details available on blog: https://forums.grsecurity.net/viewtopic.php?f=7&t=3292

Thanks to Rodrigo and all our sponsors!

https://grsecurity.net/
https://forums.grsecurity.net/viewtopic.php?f=7&t=3292

