At ARMs Length
Yet So Far Away

Brad Spengler

Open Source Security, Inc.
October 2013

H2HC

N~ grsecur ity

The Story of KERNEXEC and UDEREF on ARM

What is it?

® ARM port of two of PaX’s crucial arch-specific kernel self-protection features

® UDEREF: prevents accidental/malicious direct userland access via the kernel
® NULL derefs
® Poorly-chosen “magic” poisoned pointers
® OOB index + trivially forged structs (PERF_EVENTS)

® KERNEXEC: remove RWX memory from the kernel

® Implies no execution of userland memory

® Protects against effectively-RWX memory via virtual aliases

¢ Allows for read-only protection above and beyond simple ‘const’

Why?

Upstream kernel self-protection features are non-existent

Some vendor kernels have CONFIG_STRICT_MEMORY_RWX
® Config description is a lie
® Implementation is a joke

® Lets vendors mark a checkbox

Self-demonstrate quickly applying security concepts to an arch mostly “new”
to me, armed only with the manual

Spite

® See last year’s H2HC presentation

Beginning steps

® Acquired an Arndale development board (with Linaro userland)

® Samsung Exynos5, ARMv7, Cortex A15

Beginning steps

® Started with ARMvV7 since it supports Privileged Execute-Never (PXN)
® Think x86 SMEP

® PXN didn’t exist upstream yet, so | wanted to add support
® Focused on Large Physical Address Extension (LPAE) support first
¢ 3-level paging structures instead of 2-level

® More uniform layout of fields (easier to work with)

® Think x86 PAE

KERNEXEC on ARM LPAE

arch/arm/mm/mmu.c handles setup of protections on most kernel mappings
® mem_types array — base domain/page protection information for each level descriptors

® build_mem_type_table() —amends information in mem_types with additional flags
based on CPU capabilities

Most used is MT_MEMORY, used for RWX kernel mappings

® Completely eliminated, replaced with MT_MEMORY_RW and MT_MEMORY_RX to fail
safely during forward porting

Modified kernel linker script to group up sections with same protections

Boot with weakened protections on the kernel image, lock in the final
protections when freeing initmem

® _ read_only

KERNEXEC on ARM LPAE

® Problem! PaX allows temporary suppression of page protections to allow
privileged code to write to read-only areas

® pax_open_kernel(void) / pax_close kernel(void)
® LPAE seemingly offers no way to do this as on x86
® Creating temporary aliases would require per-cpu pgds to be secure

® Would need to muddy up all open/close calls with arguments that would be completely
ignored on x86

® Punted on this

® Moved on to LPAE UDEREF, but this set the seed for an approach that would work for
most modern ARM users

UDEREF on ARM LPAE

® Modules are located at 0OxBFO0O0000, need to move to match Translation
Table Base Register (TTBR*) granularity

® Now TTBRO fully covers userland, TTBR1 fully covers kernelland

® Can disable userland access by disabling TTBRO and changing ASID

0xbf000000 :>
Userland Userland

UDEREF on ARM LPAE

® Performed a quick test demonstrating previous technique and need for
changing ASID

® Moved on at this point
® Got lazy and didn’t feel like rewriting ASID generation code
® Started disliking LPAE already for its inability to support the tighter KERNEXEC

® Could split ASID space in half, or perhaps something smarter?

® | discovered after writing the blog that the previous description covers
exactly how Apple iOS” UDEREF-like feature works

KERNEXEC for ARMv6+

® Able to reuse most of the work put into KERNEXEC for LPAE

® CPU/LPAE-specific details mostly abstracted out by use of #defines
® PMD_SECT _RDONLY

® Found an upstream deficiency here

® On ARMv7 we can still use PXN to prevent userland code exec from kernel

® It’s not as fine-grained as with LPAE, but it ends up not mattering

® Without LPAE, we have a much more powerful feature to exploit

® Domains!

KERNEXEC for ARMv6+

® Domain Access Control Register (DACR)

15 [14 13 [12 |11 20 |9 |8 |7 |6 |5 |4 13 [2 |1 0

® 16 domains (Linux only uses 3)

® Each domain supports several access types:
® DOMAIN_NOACCESS - reject access regardless of page protections
® DOMAIN_CLIENT — obey normal page protections
® DOMAIN_MANAGER — ignore any page protections

® Domain is a 4-bit field in page table entries

® Important: domain also included in TLB entry, DACR always consulted

KERNEXEC for ARMv6+

® Domains are an extremely powerful feature

® Ability to block access to nearly-arbitrary memory ranges/”kinds” of memory on a per-
CPU basis

® Possible KERNSEAL uses
® What else could you think of for this?

® For KERNEXEC, main use is to solve the pax_open/close_kernel problem
® Set access of kernel domain to DOMAIN_MANAGER on open

® Switch back to DOMAIN_CLIENT access on close
¢ But....

UDEREF for ARMv6+

® Again using domains

* pgalloc.h:#define PAGE_USER_TABLE (PMD_TYPE_TABLE | PMD_BIT4 |
PMD_DOMAIN(DOMAIN_USER))

® So by setting the user domain to DOMAIN_NOACCESS, we cut off all access to userland
® Kernel has approved userland accessors

® copy_*_user()

® strnlen_from_user()

® csum_partial_copy from_user()

® Introduce pax_open_userland() and pax_close userland() to these

Userland

Executing in userland

UDEREF for ARMv6+

Ambient kernel
permissions

Kernel

Userland

Userland accessor

Kernel

Userland accessor

copying to userland copying to kernel

(USER_DS)

(KERNEL_DS)

Kernel

Use and

Interrupt handler
code servicing
interrupt during
userland accessor

KERNEXEC/UDEREF for ARMv6+

® Via domains we achieve protection equivalent to PaX’s KERNEXEC/UDEREF
on i386

® This makes pipacs and myself happy ©
® | hate the shadow region on the non-PCID version of amd64 UDEREF

® With both features enabled, 1.6% performance hit observed in NGINX
Benchmark 1.0.1.1, below stddev of test

® This performance can be improved further, my assembly was written for clarity

Notes on 3.10 upstream ARM fixes

® Special page installed into each task, sigreturn stubs located at system-wide
“random” offset within that page

® Installed page is subject to mmap randomization

® I don’t know of any userland that can work without the kuser helpers,
requiring one to enable the option that adds them all back

® Leaves fixed-address vector map accessible
® These helpers are still necessarily at fixed addresses (thanks to glibc/toolchain)

® My Linaro user perhaps needs the fewest, just get_tls()

® Kernel address leaks from the vector page should be dead now

® Relevant code/data moved to an adjacent kernel-only page

Our ARM vector page fixes

® As part of KERNEXEC work, kernel RWX on the vector page via virtual aliasing
(one RW, another RX) was eliminated
® No special page installed into each task for sigreturn stubs
® Kernel controls the address of the sigreturn stub userland will try to execute
® Unigue random inaccessible kernel address assigned to each task’s mmu_context struct

® We cause userland to try to execute at this random address, catch the fault, and
perform the sigreturn

® Vector page is inaccessible to userland

® We emulate get_tls() in the kernel

Testing

Previous mentioned kernel “backdoors” to trigger exploit-like activity

Created page table dumper for both short and long mode descriptor format

® ILPAE: https://grsecurity.net/~spender/kmaps-arm-v6.c

® LPAE: https://grsecurity.net/~spender/kmaps-arm-lpae.c

® Uses /dev/mem

® Finds and reports pages of memory that are RWX through virtual aliasing
Verified full removal of RWX from the kernel

Verified inability to execute/access userland directly from the kernel

https://grsecurity.net/~spender/kmaps-arm-v6.c
https://grsecurity.net/~spender/kmaps-arm-lpae.c

Testing

root:~S ./test

PaX: Kernel tried to access userland memory at 0x00008010, fsr=00000206
Internal error: : 206 [#1] PREEMPT SMP ARM

Modules linked in:

CPU: 0 Not tainted (3.7.1-grsec-00071-gac214bd-dirty #49)

pc : [<c02296a4>] Ir:[<c02295b4>] psr: 60000013

sp : ee847f90 ip : 30c7387d fp : 00000000

r10: 00000000 r9 : ee846000 r8 : c0206128

r7 : 000000d5 r6 : 00007269 r5 : b390a788 r4 : 00000000

r3 : 00008000 r2 : 40003000 rl:b390a8c4 r0:00007a69

Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user
Control: 30c5387d Table: 40003000 DAC: fffffffd

Process test (pid: 2450, stack limit = Oxee846238)

[...]

Code: €1a00007 e8bd41f0 ea0041fd e3203902 (€5934010)

Kernel panic - not syncing: grsec: halting the system due to suspicious kernel crash caused by root

Lessons Learned

Spite fails to motivate when realization sets in that the code must be
maintained for free forever ®

Fragmented/old userland is a maintenance nightmare for the kernel

Mobile Linux vendors care more about checking a box than real security
iImprovements

® Expect Apple to continue to dominate over them, SEAndroid/KNOX are just same tired
“security = access control” frauds

Focus on fundamentals, not fads

® Makes it easy to apply security to new platforms

Exploit Weaponization

(For the Linux Kernel)

(Real quick-like)

Why?

Because namespace/virtualization/LSM usage is increasing with little
discussion of tradeoffs or importance of kernel self-protection

Because ring-0 can do whatever it wants

Because I've been told making weaponization/reliability information public
reduces the value of exploit sellers

® Jam all for this!

Because it’s embarrassingly easy, as you’ll see

Disable SELinux

Set security_ops to &default_security _ops (always works)

Thanks to some SELinux “code cleanup” you can also return to void
reset_security_ops(void) (works for all other LSMs too)

If CONFIG_SECURITY_SELINUX_DEVELOP enabled, you can also modify
‘selinux_enforcing’ (read by getenforce tool when reading /selinux/enforce,
also in /selinux/status)

By patching sel read enforce and selinux_kernel status page, you can put
SELinux into permissive mode while making userland think it’s in enforcing
mode

Disable AppArmor

® Set security_ops to &default_security ops

® Orreturn to reset_security_ops

® Older kernels had some toggles: apparmor_enabled, apparmor_audit,
apparmor_logsyscall, apparmor_complain

® Newer kernels (3.x) uses new variables: aa_g profile_mode, aa_g audit,
aa_g audit_header, aa_g logsyscall, aa_g lock policy

Disable IMA

® Set security _ops to &default_security ops

® Or return to reset_security _ops

® Patch out ima_bprm_check, ima_file_mmap, ima_path_check, and
ima_file_check to all return 0 (\x31\xc0\xc3)

Disable TOMOYO/all other LSMs

® Set security _ops to &default_security ops

® Or return to reset_security _ops

Disable Auditing

® Clear audit_enabled

Disable No-New-Privs (NNP)

® Bit field located between current->personality and current->pid (both known
values)

® Other fields are unimportant, just clear all 4 bytes

Break out of user namespaces

® Perhaps surprisingly, my commit_creds(prepare_kernel cred(NULL))
technique does it automatically

® struct cred {

struct user_namespace *user_ns; /* user_ns the caps and keyrings are relative to. */

Break out of chroots

® Get task_struct ->fs offset either through simple static analysis on kernel
image or finding init_fs offset within init_task

® Find offset of root and pwd within fs_struct

® Call set_fs_root(current->fs, init_fs.root), set_fs_pwd(current->fs,
init_fs.pwd)

Break out of vserver

® Find offsets of xid, vx_info, nid, nx_info in task struct
® Will be O in init_task, but set in a confined process

® Clear the fields

Break out of OpenVZ

® Call prepare_veO_process(current)

Reliability under Xen

® Don’t blindly change crO.WP and attempt to modify kernel code, it will cause
a GPF

® Call make_lowmem_page readwrite(addr) instead

® Clean up with make_lowmem_page readonly(addr)

Reliability under CONFIG_DEBUG_PAGEALLOC

® Don’t blindly scan through kernel memory, kernels with this option enabled
have been observed to have a guard page in the kernel image

® Enlightenment parses page tables to determine safe regions to scan

Reliability under CONFIG _KALLSYMS

® Unknown kernel, no vmlinux, no /proc/kallsyms, no System.map? No
problem!

® Assuming ring0 execution can be obtained without them

® Payload reliability obtained by using the kernel’s own symbol tables in
memory

® Enlightenment finds the kernel’s own symbol resolution routines and can
thus resolve module symbols as well

Reliability when returning to userland

Make sure the userland code is locked into physical memory with mlock()
® Unprivileged users can lock 64KB

Linux is not Windows! No kernel memory is paged, attempting to access non-
present memory (outside of exception-handled areas) will result in a visible oops, or

worse

More likely under low memory, memory pressure, high exploit memory regs, higher
time between allocation and use

A decade of exploits returning to userland, and no one gets this right!
How was my PERF_EVENTS exploit so reliable despite the 64KB lock limit?

® Read the enlightenment source for this one ;)

X86 PERF EVENTS Exploit

[!] Array base is Oxc1la57a60

[!] Detected structure size of 12 bytes

[!] Targeting Oxc1a69b10

[+] Got ring0!

[+] Detected 2.6/3.x style 8k stacks, with current at Oxf1f2cc20 and cred support
[+] Disabled security of : AppArmor LSM

[+] Found ->fs offset at 0x388

[+] Broke out of any chroots or mnt namespaces

[+] Got root!

root@ubuntu:/home/spender/enlightenment#id

uid=0(root) gid=0(root) groups=0(root)
root@ubuntu:/home/spender/enlightenment#funame -a

Linux ubuntu 3.5.0-23-generic #35~precisel-Ubuntu SMP Fri Jan 25 17:15:33 UTC 2013 i686 i686
i386 GNU/Linux

References

ARM Manual
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c¢c/index.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html

Questions?

All code described in this talk is available at https://ersecurity.net

More details available on blog: https://forums.grsecurity.net/viewtopic.php?f=7&t=3292

Thanks to Rodrigo and all our sponsors!

https://grsecurity.net/
https://forums.grsecurity.net/viewtopic.php?f=7&t=3292

